
To appear in Proceedings of the ACM Conference on Computer-Supported Cooperative Work (CSCW'96)

Answer Garden 2: Merging Organizational Memory with
Collaborative Help

Mark S. Ackerman
David W. McDonald

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
{ackerman, dmcdonal}@ics.uci.edu

http://www.ics.uci.edu/CORPS/ackerman.html

ABSTRACT
This research examines a collaborative solution to a
common problem, that of providing help to distributed
users. The Answer Garden 2 system provides a second-
generation architecture for organizational and community
memory applications. After describing the need for Answer
Garden 2’s functionality, we describe the architecture of the
system and two underlying systems, the Cafe
ConstructionKit and Collaborative Refinery. We also
present detailed descriptions of the collaborative help and
collaborative refining facilities in the Answer Garden 2
system.

KEYWORDS: computer-supported cooperative work,
organizational memory, community memory, corporate
memory, group memory, information refining, information
retrieval, information access, information systems, CMC,
computer-mediated communications, help, collaborative
help, CSCW

INTRODUCTION
Many user communities have a problem with delivering
help and general assistance. Unfortunately, the user is often
left to sift through reams of documentation, find his way
through mail archives, or pursue answers through trial and
error. Normally, one attempts to examine the
documentation or other help sources, and then wanders out
into a hallway in search of friendly colleagues.

The problem becomes acute, however, in distributed
communities. We take for our example the astrophysics
community, although this problem exists in most scientific
communities. In the astrophysics community, the users
may be spread across the world, they may work in
isolation, and they may have need of relatively specialized
help. What we would like is a surrogate for this hallway
talk. Such a solution must avoid the broadcast problem of
flooding everyone's electronic mail basket with thousands

of questions. Instead, this work reports on a system to
narrow-cast a question to the appropriate others, whether
those others are experts or colleagues.

This research, then, examines a collaborative solution to a
common problem. Earlier work, a system called Answer
Garden, allowed organizations to develop databases of
commonly asked questions that grow "organically" as new
questions arise and are answered. The subsequent Answer
Garden 2, the focus of this paper, continues this work. It is
a second-generation architecture for the same design
problem, investigating some of the issues encountered in
field studies of the original system. The new architecture
provides a customizable and adaptable set of software
components that allow a variety of organizational and
informational configurations. Furthermore, it offers a
generalized solution to the problem of finding help for any
information system. We report here on the new architecture
and its responses to the context and authoring issues.

The paper begins with a brief introduction to the help and
memory problems, as well as a brief overview of the
original Answer Garden application and its field study
results. Answer Garden 2 is then introduced. After an
explanation of its architecture, the paper analyzes two
particular features of Answer Garden 2. These two features,
collaborative help and collaborative refining, are explained
at length. Collaborative help mechanisms provide the
necessary context for information, and collaborative refining
mechanisms provide support for authoring. The paper
concludes with a survey of related CSCW systems and
some conclusions about these design considerations.

FRED’S PROBLEM
Fred (not his real name) is an astrophysicist at the Harvard-
Smithsonian Astrophysical Observatory. He, like many
scientists, does not want to know anything about software
systems or his hardware. He wants to do his scientific
work, free of the multitude of computer problems that seem
to get in the way.

In the "old days," everyone sat around in a common room,
using their computer consoles with the mini-computer. If
Fred had a question, he could ask one of the half-dozen to
dozen colleagues and programmers sitting in the room.

Everyone had to hear the answer, so the community learnt
from the problems of each individual.

Now, Fred sits in his office with his workstation near his
desk. It is quieter, but much more isolated. If he has a
problem or a question, he can look through the
documentation or send electronic mail for help. If he sends
electronic mail, he may not get an answer from the
programmers for some unknown period of time, or he may
be given a response that makes him feel stupid for not
knowing the answer. Often he resorts to wandering through
the hallways, looking for people who might know the
answer. He then tries various possibilities until he finds a
solution or he gives up.

Any community, institution, or organization of any size
often has a problem with answering questions in a timely
manner. Yet, solving problems and completing tasks are
often dependent on obtaining timely answers to specific
questions.

Fred’s problem is the dual problem of help and of collective
memory. We will use the term collective memory to
denote the common attributes of organizational,
institutional, and community memory. (The term has a
related, but slightly different meaning in the
historiographical and critical literatures, but there is no
better term to denote memory in a range of collectivities.)

Within an organization or community, individuals’
information seeking requires finding the right part of the
collective memory. Typically, collective memories include
information repositories (e.g., information databases, filing
cabinets, documents). It can also include people (e.g., other
organizational personnel) [25]. The collective memory to
which Fred has access includes at least the documentation,
the system programmers, and his colleagues. However, he
may have great trouble finding the right piece of the
collective memory that has the answer he needs. In other
words, his access to the collective memory should be
augmented.

Answer Garden and Fred’s problem
Previous work, reported in [4] and [2], considered one way
of doing this augmentation. This work revolved around a
system called Answer Garden. Field studies of its use
uncovered a number of important problems in providing
collective memory and help to users such as Fred. Before
discussing these problems, and our subsequent
investigations, it will be useful to briefly describe Answer
Garden. This application still plays an important part in
our current work.

Answer Garden supports organizational memory in two
ways: by making recorded knowledge retrievable and by
making individuals with knowledge accessible. In the
standard configuration of Answer Garden, users seek
answers to commonly asked questions through a set of
diagnostic questions or other information retrieval
mechanisms. Figures 1 and 2 show Answer Garden
reimplemented in the World Wide Web. (Other, third-party

versions exist in the Web [22] and in Lotus Notes.)
Diagnostic questions guide the user through Web pages.
Alternatively, the user may use a number of other
information retrieval mechanisms to find the pages that
may contain the answer.

If the user cannot find an answer or the answer is
incomplete, the user may ask the question through the
system. (This is the result of the user pressing the “I’m
Unhappy” link in Figure 1.) In the original Answer
Garden, the system would then route the question to an
appropriate human expert. (This has been changed in
Answer Garden 2 as will be discussed below.)

In the original Answer Garden, the expert would then
answer the user through electronic mail. If the question
was a common one, the expert could insert the question and
its answer back into the information database. Thus, users
were not limited to the information in the system; if the
information was not present, they could tap the
organization’s experts. As a result, the organization would
gain a corpus of information, an organizational memory.
Users could obtain expert advice without a high
organizational cost. Other interesting properties of the
system are discussed in [2].

Open research issues
Field studies of Answer Garden’s use ([2], [3]) uncovered a
number of issues. While the system was held to have
worked, two issues were uncovered that are critical to the
success of similar memory or help systems:

❏ Tying the social network into the system in a more
natural manner. Answer Garden’s dichotomy between
experts and users was problematic. While there was
nothing in the underlying technology to force this
dichotomy, it was a simplifying assumption in the
field study to have separate user and expert groups.
Real collectivities do not function this way. Most
people range in their expertise among many different
skills and fields of knowledge. Fred knows things
about systems and his tasks, even though he may not
be able to answer specific questions. We would like to
allow everyone to contribute as they can, promoting
both individual and collective learning.

However, mechanisms to allow each person to
contribute must not overwhelm the other people who
use the system. For example, broadcasting each
question to every person in an organization or
community will fail. AG2 offers several mechanisms
to ameliorate the overload problem while allowing and
providing for a range of expertise.

❏ Providing for the contextualization of answers, thus
providing for the user’s understanding of an answer. In
the Answer Garden field study, most users either did
not need contextualized information or were able to
contextualize it themselves. However, a significant
portion of the participants did need more context.

Figure 1: Answer Garden functionality in the Web

Figure 2: An Answer Garden answer page

information
database

Web client
and pages

generator for
"front-end"
client

"raw" information
input (partially
CafeCK)

CafeCK collaborative
help "back-end"

Collaborative Refinery

Figure 3: Answer Garden 2 (AG2) architecture

In Fred’s case, the answer to a question may be present
in the documentation. However, he may lack the
required expertise to infer an answer or to even use an
explicit answer without additional situational
information.

Providing the proper context is, unfortunately,
difficult. We will return below to one way of
potentially providing this context at low cost. Our
mechanism also ameliorates the problem of providing
answers at the right level and length of explanation.

❏ Easing the authoring burden. To obtain answers, the
cost of authoring must be minimized. Furthermore,
authoring answers, as an individual activity,
promulgates the distinction between experts and
everyone else. Composing content for answers takes
as long as any writing takes, but we may be able to
ease the mechanics of the process.

One might expect these issues to become increasingly
problematic as the information becomes non-technical or
the users become less sophisticated in the domain. For
example, only astrophysicists can understand the scientific
analysis tasks that create their questions about software
systems. Astrophysicists will vary in their computer
expertise, but few wish to spend time inferring the answer
from substantial system documentation before continuing
with their analysis tasks. And, the programmers who must
currently compose the answers may not even understand the
domain or its tasks.

Additionally, the field studies uncovered a number of
technical issues, such as the need to use varying “front-end”
systems such as the Web or Notes, to consider additional
methods of finding experts, and to find better ways of
maintaining the information database. These technical
issues and the above social issues led us to reconsider the
architectural design.

ANSWER GARDEN 2 (AG2)
Answer Garden 2 (AG2) consists of a second generation
system architecture for organizational memory and
collaborative help support. There are several advantages to
this architecture.

First, the design cleanly separates the front-end of Answer

Garden (i.e., the user client) from back-end needs. More
importantly, it also decomposes the Answer Garden
functionality into a set of distributed software services.
This provides a high level of organizational flexibility; the
services can be mixed and matched in order to provide
additional flexibility. For example, by attaching an
anonymity service, users of the system can send their
questions anonymously. By attaching an anonymity
service at another point in the distributed architecture, the
experts answering the questions can also be anonymous.
Or by not having an anonymity service at all, all users and
experts can be known to one another.

Finally, the change in architecture makes much of the help
functionality possible from any information system. This
work, then, is generalizable to any information system.

System components
AG2 is built upon two underlying systems, both of which
provide a set of services. These services create the
collaborative help and collective memory functionality.
The two underlying systems are:

• The Cafe ConstructionKit (CafeCK). CafeCK is a
CSCW toolkit for supporting sociality and information
use in collaborative environments [6]. CafeCK
provides a set of reusable objects that include message
transport for asynchronous and synchronous
communication (including a Zephyr-like system,
NetNews, and email), parsing for a variety of semi-
structured protocols, private and public channels for
narrowcast communication, message filters, and
message retrieval by a variety of semi-structured
methods. By selecting from the set of available
components (or by extending it) and by writing a
simple Tcl program, an application writer can create a
set of distributed processes to handle information
retrieval, information access, or electronic
communications. CafeCK is implemented in C++,
Tcl, and Tk.

• Collaborative Refinery (Co-Refinery). Co-Refinery
provides mechanisms for handling individual and joint
information spaces. Central to Co-Refinery is the
ability to individually and collaboratively view and
manipulate Answer Gardens and other information

Web AG2
client

chat
escalation
agent

users

(a) The user’s first attempt to get an answer goes to a
chat channel.

escalation
agent QA

tracker
help
desk

Web AG2
client

(b) The user’s jth attempt to get an answer gets
escalated to a help desk.

Figure 4: Two possible escalations for a question

collections. It is especially useful in situations where
one wants to refine and distill collections of materials
as shared artifacts. It will be described extensively
below.

Co-Refinery components include objects for managing
a collection archive of materials, constructing and
maintaining a database of relationships for those
materials, and generating a suitable presentation.
Output from Co-Refinery’s presentation generator can
be HTML, Notes documents, files, or e-mail. Co-
Refinery is implemented in C++, and the Web portion
relies upon HTML 3.0 and Netscape HTML
extensions.

These two components are used together as in Figure 3.
Raw information comes into the collection archive through
CafeCK processes (such as News filters), by being
explicitly sent to the archive through e-mail, or through
filtering agents. It may be partially processed, and then is
moved into the information database. At snap-shots or
upon explicit queries (depending on a site’s tailoring of
AG2), the materials are built into Web pages, Notes
documents, or flat files. In turn, the AG2 Web or Notes
clients can send mail to CafeCK back-end processes that
then handle the details of obtaining help. These CafeCK
help processes will be described next.

COLLABORATIVE HELP
The problem as a duality
AG2’s “back end” can be viewed either as a collective
memory system or as a collaborative help system. (We use
collaborative help to denote those help systems that use
people as information sources, for example, through
Computer-Mediated Communication systems.) Each of
these views is the dual of the other. By duals, we invoke
the language of linear programming, where two forms exist
for each particular problem. Both forms are valid, and users
are free to solve the form that provides them with the most
analytical tractability. By considering the “back-end”
organizational memory problem in terms of its dual,

collaborative help, we believe we have found mechanisms
for reducing the context problem.

Above, it was noted that an open research issue was how to
alleviate the users’ need for contextualized information in
solving their problems and finishing their tasks. This issue
can be ameliorated by using collaborative help in a
controlled manner. Collaborative help functionality also
provides help to users at their own explanation level and
potentially with iterative diagnosis.

Staying local
Providing help from other people -- such as colleagues on
the same hall or other group members -- allows people to
seek help first from the people most likely to know the
local context. Colleagues can judge a person’s abilities,
expertise, and situation, and can try to provide suitable
information to solve the person’s problem. Local
participants are also more likely to provide information,
since personal social ties are key motivators in providing
assistance [7, 19].

Always asking one’s colleagues is, however, problematic.
First, it is still costly to ask other people. AG2’s
repository of previously-asked questions and frequently-
required information, however, attempts to reduce that
problem. More importantly, one’s colleagues may not
know the answer. While staying local is important, it can
also be organizationally dysfunctional [10] when there is no
local expert available. In these situations, a means for
escalating answers past the local group is required.

Escalation
Using the facilities of CafeCK, we were able to simply
construct an escalation agent for questions in AG2. This
component allows the user to decide what to do if the
question is not answered. It allows the user to consider
whether to get answers from chat systems, bulletin boards,
software agents, or other people.

The typical way that we envision the system being used is
to gracefully escalate the help request until it can be
answered. Because the escalation agent is a CafeCK
process, the escalation can be quite flexible. The agent is
currently programmed to follow organizational rules on the
order of escalation, although this is under user control. It
would be a simple matter to change this to provide different
organizational rules, complete user control, or even
heuristics (such as avoiding the chat facility when no other
users are logged into their machines). No doubt other
mechanisms could be found; this is a potential research
question.

In our prototype, the user poses a question through his
application. In the example of Fred, the user client is an
AG2 front-end, but it can be any application that has
asynchronous or synchronous communication capabilities.
The application merely connects to a CafeCK process
through, for example, e-mail. This CafeCK process, the
escalation agent, is semi-autonomous, since it can be
triggered either by the user or automatically.

Figure 5: The escalation agent

As an example, imagine the following scenario. (Note that
the underlying components for AG2 provide an enormous
flexibility, so users’ actual practices can vary widely from
this.) The user, Fred again, has a question about his data
analysis package, and he would like to know how to
correctly massage his data. He first looks through the
existing questions and answers, either in a stand-alone AG2
information database or in an AG2 component of his data
analysis application. Assuming that the answer is not
there, or that he does not understand how to apply the
information that is there, he composes a question and mails
it off through his Web browser.

Instead of the question going to an expert, as it would have
in the original Answer Garden, the question goes to his
escalation agent. This is, of course, invisible to Fred. The
question is first sent to a synchronous chat system (Figure
4a). We envision the chat system being set up with
channels or subchannels for each work group, hallway, or
other social grouping. If someone on the chat system can
answer Fred’s question, and is inclined to do so, Fred gets
his answer immediately. As mentioned above, nearby
colleagues (as measured by geographical, social, or
intellectual distance) are most likely to answer his question
with the correct and sufficient context.

In our prototype, after 5 minutes, the system pops up a
window on the screen. In our scenario, the dialog box asks
Fred whether he got an answer to his question, and if not,
whether he would like to continue (Figure 5). If Fred says
to continue, the system routes the question to a NetNews
bulletin board. (It is also conceivable that it would route it
to a chat channel with a wider distribution, but the point is
the same.) After another period of time, perhaps 24 hours,
the agent again pops up a window on Fred’s screen, asking
whether he has received an answer. The process continues,
perhaps routing the question to an expertise engine to find a
suitable human expert, to a help desk (Figure 4b), or to
agents that search for information on the Web or in
proprietary information sources (such as Dialog or Nexus).
One can even imagine agents that hire outside consultants if
the need is great enough.

In this manner, Fred or any other user is more assured of
receiving a usable answer. Staying local lowers the cost,
since organizational-level experts need not be used
immediately; increases the chance of getting an answer,
since colleagues may be more motivated to answer; and is
more likely to provide context, since colleagues know the
local situation. To be sure, this approach is not a panacea.
While it does help provide the proper amount of contextual

information to make the answer meaningful, and while
there is a greater likelihood that the answer will be at the
right explanation level and length, there are difficult issues
surrounding the social organization of channel groupings
and the like. Colleagues’ time is hardly free.

Nonetheless, staying local (but thinking global) does allow
group members to help one another, while preserving the
capability to ask larger groups as well as experts.
Furthermore, the dichotomy between experts and users is
largely broken down.

Other collaborative help services
AG2 requires a number of other CafeCK services. In
addition to the basic communication services (chat,
NetNews, e-mail) and to the escalation agent, AG2 requires
services to find experts, to provide basic statistical services,
to make users anonymous, and to track users’ questions.
The capability to find a suitable expert is required, and AG2
currently uses a rudimentary rule-based finding mechanism.
This is clearly a bottle-neck for real use, but other
researchers are developing better mechanisms for handling
this problem (e.g., [17]). The anonymity service allows
users to ask questions anonymously. Organizations or
communities might not want this service, in which case the
service is merely omitted. The statistics service notes
which communication mechanisms are used, and also tracks
the use of pre-existing answers. In a production system,
users’ questions should be tracked; otherwise, questions can
slip away.

The design of CafeCK allows these components to be
mixed and matched in a building block manner. Different
organizational arrangements can be created through the
architecture of the software components. Furthermore, each
service can be tailored through its internal Tcl programs.

Currently, only a simple expertise engine and anonymity
service have been implemented. The others are planned.

In summary, viewing the problem as one of collaborative
help allows one to remove the requirement that
organizational memory merely be a set of information
repositories. Staying local, with the possibility of
escalation, provides for a range of help from the people
around the information seeker. However, AG2 also
includes stronger support for building information
repositories as well. This support will be described next.

REFINING A MEMORY REPOSITORY
On my shelves were tons of unwinnowed
material.... In the present shape it was of little use
to me or to the world. Facts were too scattered;
indeed, mingled and hidden as they were in huge
masses of debris, the more one had of them the
worse. ...To find a way to the gold of this
amalgam...was the first thing to be done. (Bancroft
[8], 1891, p. 135)

Central to the Answer Garden application is iteratively
building a repository of commonly requested answers and
other information. If this is to be accomplished, low

overhead is required for organizational or community
members.

The original Answer Garden design assumed that building
such a memory repository would occur through the
everyday interaction of users asking questions and experts
providing answers. However, authoring was still a
significant task. The effort of writing explanations and
formulating answers cannot be minimized. Nonetheless,
Answer Garden provides mechanisms for iteratively
developing an answer. AG2 provides additional
mechanisms for refining answers from very raw information
sources as well as removing unnecessary context. We
developed Co-Refinery to provide these mechanisms. The
goal is to enable groups of people to collaborate in jointly
or individually building answers and information
repositories over time.

Collaborative refining
AG2, through the underlying Co-Refinery system, supports
an authoring process that includes four general activities:
collecting, culling, organizing, and distilling. We assume
that any of these activities, as well as authoring, may be
done iteratively or in any order. Each activity is clearly
important, although the major research contribution here is
the support for collaborative distilling:

❏ Collecting is the phase in which information is
gathered. In Co-Refinery, automatic collecting can be
set up for certain types of information streams that
occur in AG2, such as NetNews, synchronous chat
channels, or distribution lists. In addition, manual
collecting allows individual items to be submitted
through the system directly or by e-mail. Collecting
places items into the archive.

❏ After collecting the material, one must cull the
collection for interesting material, and the lesser
material must be discarded or ignored. Culling is a
selection mechanism, identifying themes or threads that
occur within a collection. A sizable reduction of
material may be possible through culling the
collection, making subsequent organizing and distilling
easier. Culling reduces the apparent size of the archive,
although in our current implementation, items are
unreferenced rather than deleted.

❏ Organizing allows one to group materials according to
some classification schemes so to enhance their
retrievability and understandability. Our current
prototype relies heavily on outlining, user-defined
indexing, and keyword indexing, but other
classification mechanisms are clearly possible. In Co-
Refinery, retrievability is enhanced by making the
culled subset a fully identifiable element in the
collection. In this way, organizing results in an
addition to the collection.

❏ The most important part of refining is distilling --
boiling down the existing (and culled) materials in
order to uncover the answers or knowledge. As with
chemical or liquor distilling, the results should be a

more concentrated or concise form of the original
information. Creating or editing a summary or
synopsis, for example, removes much of the tedious
work of wading through extraneous or erroneous
information.

The result of distilling is a distillate. Support is
provided for generating the raw material for authoring a
distillate, but it assumed that only users can fully
distill and refine the material. Co-Refinery currently
supports a number of distillates. For example, a useful
intermediate distillate consists of merely concatenating
selected NetNews messages. This allows an
author/editor to further prune the selected information
into one final distillate consisting of an authoritative
answer. This behavior is very similar to what people
currently do when they compile a FAQ. Another
useful distillate is temporally based; items in it vanish
after a short period of time. Technical hotlines often
have runs of questions, and this distillate solves the
problem of communicating the temporarily needed
answers.

As mentioned, we assume that users move fluidly among
these activities. We also assume that the refining is done
iteratively and incrementally. In doing so, the system
allows groups of users to interact in creating shared
information artifacts and a common information space.
This system represents an alternative to many current
attempts to completely automate the refining process.

Figure 6 shows the results of refining in AG2, and can be
considered as a snapshot of an iterative process. In Figure
6, the leaves are raw information, perhaps NetNews or e-
mail messages. Authors and editors have created distillates
for five of the threads, winnowing the material into answers
for frequently-asked questions. One of these answers was
shown in Figure 2 above. After being finished, some
distillates can then take the place of the raw material in the
archive. Note that some of these distillates could be
intermediate; i.e., not shown to the public because they are
under construction. Additionally, all distillates can be
iteratively revised.

The economics of distilling
Refining is not a complete solution to authoring. There
will always be effort required to compose explanations of
complex technologies and tasks. Refining reduces the
overhead for that task, and simultaneously reduces
information overload.

We do not believe that all materials will be refined. It does
not make sense in all cases to move data through
information to organizational knowledge. For example,
information that has a short-shelf life will not be refined,
especially if the information also has a high throughput
velocity. The cost would be prohibitive. Therefore, we
have attempted to define some distillates that are suitable
for temporally limited information. These distillates do not
boil down the material, but they do make finding and
retrieving the material easier.

Figure 6: Co-Refinery screen with raw information nodes and distillates

In summary, Co-Refinery and AG2 provide new
mechanisms for authoring and editing large amounts of
information. By using the Co-Refinery collecting, culling,
organizing, and distilling facilities, people can find new
ways of providing answers. If people do so collaboratively,
AG2 can further reduce the separation between users and
experts, allowing for additional organizational learning.

RELATED SYSTEMS
AG2 is clearly related to a number of HCI systems. Help
systems in general have been extensively studied in the HCI
literature (e.g., [12], [18], [1]). However, while
collaborative help is a widely used organizational and social
mechanism, it has not been properly considered within the
literature. (But see [23], [15], and [21] for notable
exceptions to this.) Sproull and Kiesler [23] demonstrate
the utility of asynchronous communication mechanisms for
providing help within organizations. Our previous work
[5] indicated the utility of synchronous chat systems, like
Zephyr [14], for help. To our knowledge, no other system
has escalation agents or the same range of help services.

There are a number of related CSCW systems that attempt
to deal with collaborative information handling. Closest to
AG2 are Grassroots [16], Community Memory [13], Spider

[11], Designer Assistant (Living Design) [24], Group
Memories [20], and BSCW [9]. Grassroots has different
mechanisms for collecting, culling, and organizing
information. These mechanisms are complimentary to
those in AG2. However, Grassroots is lacking distilling
features, since sharing the original documents is the major
thrust of the work. Community Memory, like AG2,
attempts to build a collaborative information space, but it
also lacks explicit support for refining answers or obtaining
help. Spider argues for collaborative sense-making and
discussion. We have adopted its general philosophy, but its
major technical thrust is not on the help problem.
Designer Assistant, similarly, provides for iterative
information gathering and sense-making, but its major
thrust is on design rationale. BSCW provides an alternative
shared workspace environment, but it lacks support for the
refining activities in AG2. None of these systems, as far as
we know, have collaborative help facilities.

SUMMARY
Returning to poor Fred’s problem, all he wants is help to
solve his computer questions. The institution in which he
has an office and the community to which he belongs,
however, want to reduce the cost and effort of answering
those questions. Fred’s problem, then, becomes one of

augmenting the collective memory in such a way that it
benefits Fred as well as all of the social collectivities of
which he is a part.

This paper has examined some technical mechanisms for
augmenting the collective memory accordingly. We have
tried to show that collaborative help and collaborative
refining techniques can be of benefit. These techniques can
ameliorate, respectively, the context and authoring issues.
Moreover, we have especially tried in this work to correct
the problematic dichotomy of experts and users,
promulgated in our earlier work.

While we believe that these technical mechanisms offer
great potential for organizational and community memory,
proof must await field studies of AG2’s use.

Acknowledgments
This project has been funded, in part, by grants from NASA
(NRA-93-OSSA-09), the UCI Committee on Research,
Interval Research Corporation, and the California
Department of Transportation. We want to especially
acknowledge Eric Mandel for his continuing insights into
the needs of user communities, especially the astrophysics
community. This project has benefited greatly from
conversations with Tom Malone, Paul Resnick, Wanda
Orlikowski, JoAnne Yates, Debby Hindus, Jonathan
Grudin, Rob Kling, John King, Takeshi Ishizaki, Leysia
Palen, Paul Dourish, Kate Ehrlich, Christine Halverson,
and many others. The other members of our research
group, Brian Starr, Jack Muramatsu, Wayne Lutters, and
Andy Tipple, contributed to this understanding of collective
memory and collaborative help.

References
1. Aaronson, A. and J. M. Carroll. Intelligent Help in a

One-Shot Dialog: A Protocol Study. Proceedings of
CHI + GI '87, 1987: 163-168.

2. Ackerman, M. S. Augmenting the Organizational
Memory: A Field Study of Answer Garden.
Proceedings of CSCW'94, 1994: 243-252.

3. Ackerman, M. S. Definitional and Contextual Issues
in Organizational and Group Memories. Information
Technology and People, 1996, 9(1): 10-24.

4. Ackerman, M. S. and T. W. Malone. Answer Garden:
A Tool for Growing Organizational Memory.
Proceedings of ACM Conference on Office Information
Systems, 1990: 31-39.

5. Ackerman, M. S. and L. Palen. The Zephyr Help
Instance: Promoting Ongoing Activity in a CSCW
System. Proceedings of CHI'96, 1996: 268-275.

6. Ackerman, M. S. and B. Starr. Social Activity
Indicators: Interface Components for CSCW Systems.
Proceedings of ACM Symposium on User Interface
Software and Technology (UIST), 1995: 159-168.

7. Allen, T. Managing the Flow of Technology. MIT
Press, Cambridge, MA, 1977.

8. Bancroft, H. H. Literary Industries: A Memoir.
Harper and Brothers, New York, 1891.

9. Bentley, R., T. Horstmann, K. Sikkel and J. Trevor.
Supporting Collaborative Information Sharing with the

World Wide Web: The BSCW Shared Workspace
System. Proceedings of WWW Conference, 1995:
manuscript.

10. Blau, P. The Dynamics of Bureaucracy: A Study of
Interpersonal Relations in Two Government Agencies.
University of Chicago Press, Chicago, 1955.

11. Boland, R. J., Jr., R. V. Tenkasi and D. Te'eni.
Designing Information Technology to Support
Distributed Cognition. Organization Science, 1994,
5(3): 456-475.

12. Campagnoni, F. R. and K. Ehrlich. Information
Retrieval Using a Hypertext-Based Help System.
Proceedings of SIGIR '89, 1989: 212-220.

13. Chaplin, D. Community Memory. Department of
Computer Science, Lancaster University, manuscript,
1994.

14. DellaFera, C. A., M. W. Eichin, R. S. French, D. C.
Jedlinsky, J. T. Kohl and W. E. Sommerfeld. The
Zephyr Notification Service. Proceedings of Winter
1988 Usenix Technical Conference, 1988: 213-220.

15. Finholt, T. A. Outsiders on the Inside: Sharing
Information through a Computer Archive. Carnegie
Mellon University, Ph.D. thesis, 1993.

16. Kamiya, K., M. Roscheisen and T. Winograd.
Grassroots: Providing a Uniform Framework for
Communicating, Sharing Information, and Organizing
People. Proceedings of CHI'96, 1996: 239-240.

17. Kautz, H., A. Milewski and B. Selman. Agent
Amplified Communication. Proceedings of AAAI
Symposium on Information Gathering from
Heterogeneous, Distributed Environments, 1995.

18. Kearsley, G. Online Help Systems : Design and
Implementation. Ablex, Norwood, NJ, 1988.

19. Kraut, R. E., C. Egido and J. Galegher. Patterns of
Contact and Communication in Scientific Research
Collaboration. In Galegher, J., R. E. Kraut and C.
Egido (ed). Intellectual Teamwork. Lawrence Erlbaum,
Hillsdale, NJ, 1990.

20. Lindstaedt, S. N. Group Memories: A Knowledge
Medium for Communities of Practice. Department of
Computer Science, University of Colorado, Ph.D.
proposal, 1996.

21. Okamura, K., W. J. Orlikowski, M. Fujimoto and J.
Yates. Helping CSCW Applications Succeed: The
Role of Mediators in the Context of Use. Proceedings
of CSCW'94, 1994: 55-65.

22. Smeaton, C. The AnswerWeb. Proceedings of WWW
Conference , 1995: http://www.cee.hw.ac.uk:80
/~calum/AnswerWeb /paper.html.

23. Sproull, L. and S. Kiesler. Connections: New Ways
of Working in the Networked Organization. MIT
Press, Cambridge, MA, 1991.

24. Terveen, L., P. Selfridge and M. D. Long. Living
Design Memory: Framework, Implementation,
Lessons Learned. Human-Computer Interaction, 1995,
10(1): 1-38.

25. Walsh, J. P. and G. R. Ungson. Organizational
Memory. The Academy of Management Review, 1991,
16(1): 57-91.

