
Expertise Recommender: A Flexible
Recommendation System and Architecture

David W. McDonald and Mark S. Ackerman
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

{dmcdonal, ackerman}@ics.uci.edu

ABSTRACT
Locating the expertise necessary to solve difficult problems
is a nuanced social and collaborative problem. In organiza-
tions, some people assist others in locating expertise by
making referrals. People who make referrals fill key orga-
nizational roles that have been identified by CSCW and
affiliated research. Expertise locating systems are not de-
signed to replace people who fill these key organizational
roles. Instead, expertise locating systems attempt to de-
crease workload and support people who have no other
options. Recommendation systems are collaborative soft-
ware that can be applied to expertise locating. This work
describes a general recommendation architecture that is
grounded in a field study of expertise locating. Our exper-
tise recommendation system details the work necessary to
fit expertise recommendation to a work setting. The archi-
tecture and implementation begin to tease apart the techni-
cal aspects of providing good recommendations from social
and collaborative concerns.

Keywords
Recommendation systems, collaborative filtering, expert
locators, expertise location, expertise finding, information
seeking, CSCW, computer-supported cooperative work.

INTRODUCTION
Everyday, people face difficult problems that they cannot
solve alone. In these situations the right people are the ones
who have the expertise to answer a specific question or in
some other way move the problem toward resolution.

In organizational settings, people fill key roles that assist in
solving problems or initiating important collaborations.
Managers, senior employees, gurus, information mediators
[4], and expertise concierges [13] are sought because of
their ability to solve problems directly or make well in-
formed referrals. The ability to fill this role makes these
individuals valuable to the organization and makes it ap-
parent when they are unavailable.

Recommendation systems are one possible technology that
can augment and assist the natural expertise locating be-

havior in organizations. A recommendation system that
suggests people who have some expertise with a problem
holds the promise to provide, in a very small way, a service
similar to that provided by key people. Expertise recom-
mendation systems can reduce the load on people in these
roles and provide alternative recommendations when these
people are unavailable.

This work presents an architecture and implementation of
the Expertise Recommender system (ER). ER offers several
advances over previously existing systems:

• The architecture is open and flexible enough to address
different organizational environments. If CSCW sys-
tems, and specifically recommender systems, are situ-
ated in their activity, organizationally specific compo-
nents will be necessary within any general-purpose
framework. Recommender systems, to date, have been
“one size fits all”.

• Organizationally specific implementations are more
robust by teasing apart technical aspects of making
good recommendations from the social and collabora-
tive aspects of matching individuals. We do this based
on findings from an earlier field study.

• The work proposes an alternative approach to the
creation and maintenance of user profiles than ratings.
This approach uses organizationally relevant data
sources to create profiles that are more suited for
automated expertise location.

Each of these claims will be covered below.

We begin this paper with an overview of prior systems that
support expertise locating. Next, we consider what it means
to seek expertise socially, in order to firmly ground the
requirements of our system. We follow with a description
of our system, Expertise Recommender (ER). A small sce-
nario demonstrates how a user interacts with our system.
Our last sections include the details of the architecture and
of an implementation.

EXPERTISE LOCATING SYSTEMS AND CSCW
CSCW and adjacent literatures provide examples of sys-
tems that help people find others with suitable expertise.
Systems that assist with expertise location are similar to a
broad class of systems known as recommendation systems.
Recommendation systems are commonly used to recom-
mend documents based on user preferences [17]. This defi-

nition distinguishes recommendation systems from systems
that are more properly characterized as information re-
trieval (IR) or information filtering.

There are a wide variety of recommender systems. In that
context, the term “documents” should be broadly con-
strued. Recommendation systems have been used to rec-
ommend a variety of things including Usenet news [11],
web pages [2, 9], videos [8], movies, music [18] and books.

Some systems refer a user to other people, which is essen-
tially making recommendations about people. Who Knows
and Referral Web are typical examples of systems that
make referrals. Who Knows [6, 20] found people who
knew something about a topic, based on a profile con-
structed from exemplary work documents. In a sense,
documents were seen as surrogates for people’s interests in
a twist on standard IR models. On the other hand, Referral
Web [10] used social networks to assist expertise location.
Referral Web identified relevant individuals by their par-
ticipation in co-authoring relationships and presented users
with a chain of relationships that needed to be traversed
from the person seeking expertise to the person who might
have the desired knowledge. Yenta [5] is a hybrid of these
two models, using profiles constructed from personal data
as well as routing messages along a network of inferred
shared interests.

In our view, recommendation systems are not completely
synonymous with collaborative filtering (CF) systems.
Many CF systems rely on explicit statements of user opin-
ion, such as ratings, to create user profiles. By relying on
ratings, CF systems often have difficulty generating the
initial user profile and, as the profiles develop, must deal
with a sparseness of ratings relative to the total number of
items. These are two active areas of CF research.

A few successful recommendation systems rely on implicit
opinions, rather than explicit ratings. Tapestry [7],
GroupLens [16] and PHOAKS [9, 21] have all used indi-
rect activity. Tapestry made recommendations based on
who read or responded to a particular bulletin board mes-
sage. One version of GroupLens used time-spent-reading a
message as an implicit opinion. And PHOAKS relies on
frequency-of-mention in a stream of discussion as a type of
voting mechanism for web pages. Explicit rating schemes
are unlikely to work for expertise recommendation, because
people are reticent to explicitly state opinions of
co-workers with out an appropriate context. Ratings may
not work, but it might be possible to collect feedback.

CF systems have another weakness for expertise recom-
mendation. Many recommendation systems have very spe-
cific architectures that are tailored to recommend their spe-
cific type of artifact. As well, these architectures commonly
implement a single clustering algorithm (e.g. Pearson Cor-
relation, Single-Value Decomposition, Bayesian classifier)
for all participants and all artifacts. These clustering algo-
rithms, also called neighborhood-based predictive algo-
rithms, implement a single collaborative model that can be

described as Birds of a Feather Flock Together (BOF).
These systems tightly couple the architecture and the col-
laborative model.

In the case of PHOAKS, Referral Web, and active collabo-
rative filtering [12], different algorithms and different col-
laborative models were chosen because the BOF model and
clustering algorithms did not effectively fit the recommen-
dation situation. In expertise recommendation, a BOF
model that clusters profiles may not effectively distinguish
individuals who have expertise from those who have only a
small amount of knowledge. Alternatively, a BOF model
that was effective at clustering the profiles of individuals
who have expertise would likely not be effective at distin-
guishing in which topics their expertise lay.

This previous work suggests two critical improvements.
First, any expertise recommendation solution should sup-
port a range of collaborative recommendation models and
behaviors. Below, we will show the social requirements for
this, but technically, an open architecture would permit a
range of potential solutions. Second, one of the most diffi-
cult and perhaps most interesting problems from a CSCW
perspective is how to begin untying the technical aspects of
making recommendations from the social and collaborative
aspects of making a recommendation to a specific user.
Current recommendation approaches, especially BOF ap-
proaches, do not provide this flexibility.

The architecture that we will present is capable of support-
ing a range of collaborative recommendation models. An
organizationally specific implementation will demonstrate
the flexibility in the architecture.

However, before turning to the architecture and the subse-
quent implementation we must describe what people want
when they seek other people for their expertise. We need to
show how the recommendation of expertise is in the nu-
anced details of collaborative interaction. These details are
the basis for our approach to the technical work.

GROUNDED REQUIREMENTS
Our prior work [13] describes a field study to examine ex-
pertise location. The field study was motivated by two de-
sires. First, we hoped to contribute to a better understand-
ing of the intricacies of expertise and expertise locating in a
rich work setting. Secondly, we hoped to learn how exper-
tise locating systems could be improved to better assist and
augment the natural expertise locating behavior that people
exhibit. The issues and findings raised in the literature were
not sufficiently informative or have not always been ori-
ented toward the objective of informing a system architec-
ture and implementation. In short, we hoped to firmly situ-
ate systems development in a complex nuanced social set-
ting as well as implement something useful to a group of
participants.

The following briefly recounts our field study and the re-
sults [13].

The MSC Field Study
The field site was a medium sized software company that
builds, sells, and supports medical and dental practice man-
agement software. Medical Software Corporation1 (MSC)
has about 100 employees at its headquarters where the
study took place. The participants in the study worked in
Technical Development, Technical Support and Technical
Communications. These three departments are central to
the development and support of MSC’s products. These
departments comprise a little more than one third of the
employees at headquarters.

The following findings are based on an initial 5 months in
the field. Data was collected using qualitative methods in-
cluding participant observation, semi-structured formal
interviews and informal interviews. The data was analyzed
using standard ethnographic techniques.

Our study found that people at MSC commonly engage in
three behaviors that support expertise locating: expertise
identification, expertise selection, and escalation. We note
that identification, selection, and escalation are analytical
distinctions useful for understanding the fine social and
cognitive decisions which are made during expertise locat-
ing and that will later be useful for technical design. It is
clear that only the most self-reflective of the participants
made much if any distinction among these three behaviors.

Expertise identification is the problem of finding a set of
candidates who are likely to have the desired expertise.
Expertise identification relies on prior experience with oth-
ers, key people like an expertise concierge, and historical
artifacts. The expertise concierge routes people to others
with the necessary knowledge and expertise. The role has
much in common with Ehrlich and Cash’s information me-
diator [4], Paepke’s contact broker [15], and Allen’s tech-
nological gatekeeper [1]. Each of these roles is specialized
to the organizational context. Historical artifacts are prod-
ucts and byproducts of the work that other MSC employees
have produced. The composition and form of historical
artifacts range from unstructured to highly structured things
that can exist on-line or off-line.

Expertise selection is the way participants picked one per-
son (or a small number of people) to approach for help.
Expertise selection is guided by organizational criteria, the
load on the potential source, and how a source reacts and
interacts during a request for help. Social, organizational,
and individual preference assist in narrowing a set of iden-
tified candidates to one or a small number of people who
can be contacted.

In some cases, prior research has intertwined elements of
expertise identification and selection. Allen’s [1] work with
engineers demonstrated that information seeking is heavily
influenced by social networks. Cicourel [3] observed that
organizational and institutional factors reinforce expertise

1 Names and individual identifiers have been changed to
protect the privacy of the corporation and the participants.

status and can then constrain who is pursued for expertise.
Lastly, Orr’s [14] work with repair technicians reveals how
narrative exchange (war stories) serves to demonstrate ex-
pertise and notions of competency which then guide re-
quests for assistance with difficult problems.

Escalation is the mechanism that fixes breakdowns in iden-
tification and selection. Participants had difficulty with
identification and selection because it requires fine judge-
ments often based on incomplete and imperfect informa-
tion. Escalation is an iteration of identification and selec-
tion given additional knowledge and information gained
from prior iterations. During escalation the individual who
initially engaged the problem maintains problem owner-
ship. Escalation results in a wider, spreading activation
through the organization that involves more people in the
eventual solution to a difficult problem.

The architecture that we describe later in this paper pro-
vides specific support for this model of expertise location.
An implementation of this architecture, however, requires
specifics of how people perform these behaviors. The next
section describes two specific identification heuristics that
were used by participants at MSC.

Expertise Locating Heuristics
The MSC field study provides a detailed understanding of
the following two identification heuristics. We found this
understanding essential to building a nuanced system.
These heuristics, Change History and Tech Support, are
behaviors and rules about interpreting implied meaning
using specific historical artifacts at MSC when identifying
potential expertise at MSC. These historical artifacts have
many, potentially crucial, features, but the participants at-
tend to only a few through specific rules of thumb. The
details are quite important to the behavior of the partici-
pants and the eventual behavior of a system.

Change History Heuristic
Change History is a single heuristic designed to augment an
expertise locating behavior common to MSC’s developers.
Developers called this behavior the “Line 10 Rule.”

The “Line 10 Rule” is a function of the organization that is
MSC and the work practices that are enforced there. The
developers follow a common work practice. For each soft-
ware change, they check the appropriate module out of the
version control system, make the changes, test the changes,
and then check the changes back into the version control
system. Each change is annotated with the module name,
the module version, the developer responsible for the
change, the check-in date, and a short text description of
the change. Since many changes are the result of a con-
tractual obligation, an administrative assistant cross-
validates the changes in the version control system, the
work-orders that divide up multiple changes, the time spent
on changes and the total time and accounts for the contract.

Developers at MSC do not specialize in any part of the
system. In practice, however, there is some attempt to as-
sign a developer work in an area of the code where she has

worked in the past. Yet, the expanse of the system, the
number of developers, and developer turnover will result in
a developer being assigned work in portions of the code
where she has not worked before. Developers use the “Line
10 Rule” in an attempt to overcome the problems that arise
when working with unfamiliar code.

On the surface the “Line 10 Rule” is a simple heuristic.
Given a problem with a module a developer looks into the
version control system to see who last modified the code
and then approaches that person for help. Developers say
that this rule works because the person who last made a
change has the code “freshest” in mind. The version control
system is not specifically designed to support this exact
use. As a result, the rule is not strictly followed, but most
developers state that the heuristic is “good enough” to often
get the help they need.

Tech Support Heuristic
The tech support identification heuristic is not known by a
specific name. The heuristic augments a behavior of tech-
nical support representatives when faced with an unfamiliar
or difficult support problem.

The heuristic is applied to the support database. The sup-
port database mediates all work performed by technical
support representatives. New problems (“calls”) can be
entered by a support rep or by customers via email.

When faced with a difficult problem, a representative will
perform multiple, separate queries over the support data-
base using the symptoms, customer, or program module
involved. The support rep then scans the records sequen-
tially looking for similarities between the current problem
and any past problems as returned by the different queries.
In scanning records a support rep looks to identify people
who have previously solved similar problems.

The support database is not designed to enable this type of
activity. Each query (symptom, customer or program) must
be completed separately, so finding similarities among the
three primary characteristics is mostly done in the support
representative’s head. At MSC support representatives are
assigned to specific customers. This benefits the customer
because a single support representative can remember more
details about the context of a customer’s installation. A side
effect is that, while the database does not facilitate queries
across the three indices, establishing the relationship be-
tween an MSC customer and the support rep who works
with them is relatively simple.

The tech support identification heuristic consists of attach-
ing the symptoms, customers, and program modules of
solved problems to the person who solved them. As a sim-
ple rule of thumb this scanning behavior works fairly well.
However, the process can be time consuming and is only
profitable when applied to more difficult support problems.

In summary, prior work and our field work demonstrates
several important requirements of expertise locating:

• Detailed heuristics and social interaction guide an ex-
pertise seeker to identify candidates who are likely to
have the required expertise.

• Social and organizational norms and factors guide an
expertise seeker to pick a small number of candidates
to pursue for help.

• The details matter. The heuristics described here are
extremely bound to the organizational environment.
Systems that augment expertise locating must be capa-
ble of handling a large number of details that vary
based on the specific context and problem.

The focus of this paper now shifts from the details of the
requirements (as exemplified by MSC) to the technical
design of the expertise recommendation system.

THE EXPERTISE RECOMMENDER (ER)
The Expertise Recommender (ER) is firmly grounded in
the findings from the MSC study. ER is really two things at
once, at two different levels of abstraction. At the most
abstract, ER is an architecture designed to handle a range of
recommendation problems. However, recommendation
architectures cannot solve specific recommendation prob-
lems at specific organizations; only specific implementa-
tions of an architecture can do so. Therefore, we also show
how our work addresses this issue by implementing a spe-
cific instantiation suitable for the expertise locating behav-
ior found in the field study of MSC.

To avoid confusion, for the remainder of this paper the ar-
chitecture will be referred to as ER-Arch and the imple-
mentation will be known simply as ER.

This section first presents a simple usage scenario that pro-
vides an overview of a client and how the user interacts
with the system. We follow the scenario with a description
of ER-Arch, and conclude with details of the MSC imple-
mentation of ER.

A Brief Usage Scenario
This scenario provides a picture of the user interaction with
the system and several key features of an ER client. The
scenario describes a problem that MSC support representa-
tives might encounter in the course of their day-to-day
work with MSC customers.

Madhu is a junior technical support representative. Support
reps like Madhu are assigned to handle all incoming calls
from a specific set of MSC customers. However, today
Madhu is also covering for a support rep who is on vaca-
tion. Madhu receives a call from a customer, PCI, who
states that the system is reporting a file error in patient
demographics. Even as a relatively new support rep, Madhu
is fairly knowledgeable about patient demographics. How-
ever, Madhu is not familiar with the specific customer, PCI,
and why that customer’s system might be reporting an er-
ror.

Madhu recognizes that he will need help resolving this
problem. He launches the ER client, logs into the system

and gets the main window (figure 1). The main window
contains a menu bar and a list of recent prior requests that
Madhu made. Prior requests are live elements (save sets)
that can be revisited. When revisiting a prior request, the
user can review the people who were recommended or es-
calate the request to gain additional recommendations.

Figure 1. Expertise Recommender Main Window

Madhu has not made any prior requests for this problem, so
he will have to make a new request. He chooses “New Re-
quest” from the “File” menu and the client displays the
expertise request dialog (figure 2). Through conversation
with the person reporting the error, Madhu is able to get the
specific error code and determines that the error is gener-
ated in a module of the patient demographics system called
M.013.

Figure 2. Expertise Request Dialog

Madhu decides that the problem is most closely associated
with the “Tech Support” topic area and picks this topic in
the new request dialog. Madhu chooses the “Social Net-
work” filter because he would like the results filtered based
on the people whom he knows best. The dialog lists the
available identification heuristics and selection techniques
in the “Topic Area” and “Filter” pop-up menus respec-
tively. In the “Request” text field, Madhu enters the error
(I/O Error 16), the program module (program M.013) and
the customer (customer PCI). (These names would be natu-
ral to a support rep at MSC.) Madhu clicks the “Recom-
mend” button, sending the request to the server.

After a short wait, the server responds with a list of rec-
ommendations. Madhu quickly recognizes that the first few
people will not work. The first recommendations include
the support rep whose calls Madhu is now covering, as well
as a person from training who is currently off-site. So,
Madhu immediately escalates the request to get additional
recommendations (figure 3).

The response dialog displays the request followed by a list
of recommended people. Each person is listed in a single
pane containing contact information that includes office

number, phone number, phone extension, and email ad-
dress. Additionally, each pane contains a “Contact” button
that is active only when the recommended person is logged
into the ER server. The contact button, when active, estab-
lishes a synchronous chat with the recommended person.

Figure 3. Recommendation Response (Escalated)

Madhu’s escalated request returns two additional people,
one from development and one from training. Madhu rec-
ognizes that ER has recommended a friend in development
as someone who is likely to have expertise. Madhu walks
over to the development suite to look for his friend.

This brief overview of a user’s interaction with ER demon-
strates several key aspects of ER:

• The user can pick the heuristic and the associated data
that will be used to generate a recommendation.

• The user can choose the mechanism that tailors the
recommendations to the user.

• Recommendations remain live so that they can be
quickly revisited and escalated should the initial rec-
ommendations prove unfruitful.

Moving on from the scenario, we next turn to a description
of the ER-Arch and the implementation details of an ER
system for MSC.

The Architecture — ER-Arch
Like many recommendation systems, ER-Arch is server
based, and a client is necessary to access the functionality.
ER-Arch can support simple clients, like a Web based in-
terface, or clients tailored to support specific features of the
ER server. Regardless of the client, the important architec-
tural details are in the ER server. Unless otherwise indi-
cated, the components and interconnections should be as-
sumed to exist in the server.

At a high level, ER-Arch is a pipe and filter architecture
[19]. This architecture is widely used in information re-
trieval and information filtering, and it has great utility in
expertise recommendation (as will be discussed below).
Accordingly, ER-Arch is a collection of high-level supervi-
sors, easily extensible heuristic modules, and their data
stores. The supervisors provide general services and con-
nections that facilitate a specific implementation. They also
coordinate the underlying heuristic modules to provide re-

quired services (such as identification) to the system. The
databases provide persistent storage for profiles and various
preferences. The supervisors in ER-Arch support profiling,
identification, selection and interaction management. An
overview of ER-Arch is provided in figure 4.

N
et

w
o
rk

Profile
DB

ERServer

Identification
Supervisor

Selection
Supervisor

Interaction
Management

Prefs
DB

Profiling
Supervisor

HTTP
Server

ERClient

Netscape: Expertise Recommender - Madhu's Recent Requests

N
http://www.msc.com/cgi-bin/experthome/

Madhu's Recent Requests
Change History Social Network Reporting Labels M.055 M.054

Tech Support Departmental FQHC Medicare Billing

Change History Social Network insurance file maintenance m.086 m.087

New Request Preferences Log Out

Web Browser

Figure 4. Expertise Recommender Architectural Overview

The ER server logically glues together portions of
ER-Arch. It also handles the details of managing connec-
tions and servicing requests. The ER server implements a
protocol that clients use to request and receive recommen-
dations. The supervisors in ER-Arch support profiling,
identification, selection and interaction management. The
following sections discuss the ER-Arch supervisors, data-
bases, and the interconnections among them in more detail.

Profile DB

Explicit
Ratings

P 1

Hearsay

P n

User
Behavior

P 2

Implicit
Activity

P 3

Profiling Supervisor

Figure 5. Profiling Supervisor

Profiling Supervisor
The profiling supervisor is responsible for creating and
maintaining profiles. In many recommendation systems,
profiles are a list of items which an individual has rated.
These ratings profiles are used in two ways. First, profiles
are clustered to create groups of users who have similar
likes and dislikes. Additionally, profiles are used to identify
items that a user has not yet rated and are therefore good
candidates for recommendation.

In ER-Arch profiling is a periodic activity which is de-
signed to be run off-line relative to the other activities of
the server. ER-Arch can be used to maintain profiles of
more than one type of thing and generate profiles from
more than one single source. This is facilitated by a collec-
tion of modules supervised by the profiling supervisor.
Many prior recommendation systems only support one
method of profiling.

The profiling supervisor coordinates the profiling modules
and provides access to the profile database. The profiling
database stores the results of profiling and also links pro-
filing to the other supervisors.

Identification Supervisor
Identification picks a set of items or people who are rea-
sonable candidates for a recommendation. Items are picked
by applying one or more heuristics and adding the identi-
fied candidates to a set. In the same way that profiling in
ER-Arch is designed to support multiple types of profiling,
ER-Arch is also designed to support multiple identification
heuristics. This is different from many prior recommenda-
tion systems that support only one method of picking can-
didates. The identification supervisor coordinates the appli-
cation of each heuristic. The supervisor provides each heu-
ristic module with access to the profile database.

Profile DB

User/Client
Request

Raw
Recommendation

Birds of
a Feather

H 1

Line 10
Rule

H n

Opinion
Leader

H 2

Identification Supervisor

Figure 6. Identification Supervisor

Identification is initiated in response to a user request.
Through an ER client, the user can indicate which heuristic
she would like to apply and provide parameters that tailor
the heuristic to her current needs or desires. The result of
identification is a set of raw recommendations. Raw rec-
ommendations are passed directly to the next stage.

Selection Supervisor
Selection takes a set of candidate recommendations, and
then reorders and possibly removes items from the set to
generate a refined recommendation. The selection supervi-
sor receives the raw recommendations from identification
and applies one or more selection modules (such as organi-
zational criteria). The selection supervisor in ER-Arch is

designed to support many different methods of selecting
and filtering the raw recommendations.

The selection supervisor provides selection modules access
to the preference database that maintains personal and or-
ganizationally relevant data (e.g., departmental affiliation)
that can be used as selection criteria. The result of selection
is a refined recommendation. The refined recommendation
is passed into the interaction management before becoming
a final recommendation.

User & Org.
Prefs DB

Final
Recommendation

Interaction
Management

Raw
Recommendation

Social
Network

F 1

No Filter

F n

Workload

F 2

Selection Supervisor

Figure 7. Selection Supervisor and Interaction Management

Interaction Management
Interaction management receives the refined recommenda-
tions and processes them before releasing them as a final
recommendation. Interaction management in ER-Arch
tracks the users’ interaction with the system and tracks the
recommendations. Interaction management also collects
feedback about system performance. The specific compo-
nents of interaction management depend upon the specific
needs of an organization and a given implementation

Interaction management serves to reintegrate and smooth
out discontinuities introduced by separating expertise loca-
tion into two distinct phases. In the real world, communi-
cation, escalation, issue tracking, problem context, and how
individuals manage their accessibility to others are the set-
ting in which expertise location resides. Interaction man-
agement is the architectural component that provides these
components, thereby serving to tie together and serve as the
setting for identification and selection.

Current State of ER
ER-Arch is instantiated in an implementation of ER for
MSC. ER includes a server and a dedicated client. Both
server and client were coded in Java, and consist of more
than 20,000 lines in 84 classes. The code includes numer-
ous base classes and abstract classes that simplify the ex-
tension of ER with new identification heuristics and new
selection techniques.

The MSC Implementation
As mentioned, much of the promise of ER-Arch lay in its
flexibility. If expertise seeking really is situated within spe-
cific organizational or social contexts, presumably we will
need some combination of generic and organizationally
specific mechanisms for finding people. This section details
the work involved in creating an implementation of ER
suitable for MSC’s use. For MSC, ER implements the two
identification heuristics described above as well as three
selection techniques. Perhaps more importantly, this section
also describes the organizationally specific data processing
required to effectively generate expertise recommendations.

To implement the identification heuristics, real data from
MSC’s change history system and support database were
required. MSC provided the most recent eight years of pro-
gram change history covering their medical system and a
portion of the shared libraries used by both their medical
and dental systems. This corresponds to a total of 7316
individual code modifications. The data from the support
database cover the last four years of customer support ac-
tivity. These data include all calls logged and marked as
completed. The support data cover software and hardware
issues for all of MSC’s products. More than 200,000 calls
were handled during the time period covered by the data.

Profiling
The identification heuristics and profiling modules are
strongly related through the profile database. The identifi-
cation heuristics specify which features the profiling mod-
ules must extract. The intricate details of implementing
profiling modules for MSC demonstrate how real, messy
data sources are transformed into profile records more
amenable to the application of identification heuristics.

The profiling supervisor controls profiling in ER. Profiling
modules are extensions to a base class that provides meth-
ods for interacting with the profiling supervisor and the
profile database. ER supports a profiling module for each
data source and corresponding identification heuristic. Pro-
filing modules incrementally update each profile record.

The change history profiling module crawls through each
change collecting the developer responsible for the change,
the module name, the version, and date. For each change,
the developer’s profile is found and the slot containing
code changes is searched for previous modifications to the
module. If the developer has no prior changes, then a new
entry is made containing the module, the date of the most
recent change, and the total number of changes. If the de-
veloper had previously made a change, then the date of last
change is updated and the total count of changes is incre-
mented. The profiling module examines dates and is careful
to modify profiles only when changes are more recent.

The profiling module for the tech support area is incre-
mental as well. However, the tech support profiling module
assumes that it will be fed unique records from the techni-
cal support database. The profiling module considers four
fields key: the support representative, the description of the

problem (a small amount of free form text), the customer,
and the module that the customer reports is the problem.
These four fields are used to incrementally build three
vector spaces that characterize a specific person’s activity
in the support database.

Creating profiles with a vector space model required im-
plementing additional functionality to support profiling and
identification. A set of thesauri were needed, one for each
of the vector spaces. These determine which terms are in
the vector space, and therefore should be counted or not
counted. A parser was required to separate terms, phrases,
and important punctuation. This same parser is also used to
parse user queries.

The support database records are exceedingly messy. The
entries have few restrictions and data entry conventions that
are not formalized. Different support representatives have
different preferred misspellings and abbreviations. These
misspellings and abbreviations created two potential prob-
lems that had to be solved. First, by using frequency of
occurrence as a mechanism for determining which terms
are entered into the thesaurus, some of the abbreviations
would never be entered because they occur too infre-
quently. Secondly, with many misspellings and non-
uniform abbreviations, users might find it difficult to garner
results when using their personal, quirky language.

An ad-hoc approach addressed these problems with the
data. First, a parser was built that recognized punctuation
important to how MSC’s systems work. The parser was
coded to recognize certain phrases which are relevant to the
way customers and support reps express problems. The
parser removes common stop words, but does not perform
any stemming. The parser was used to parse the symptoms,
customers, and program fields of all support records gener-
ating a complete list of terms. For each field, terms were
sorted, reviewed, and cleaned to create a thesaurus.

The tech support profiling module constructs a profile in
two stages. In the first stage each support database record is
examined, and the support rep assigned to the problem is
identified. The symptom, customer, and program module
fields are parsed, and terms are validated against the appro-
priate thesaurus. The support rep’s profile is then updated
by incrementing the term counts in the appropriate vector
space. Additionally, a master term vector is incremented
representing the total number of times a term is used in the
entire database. In the second stage, the profiling module
visits each profile record and normalizes each vector.

The profiling supervisor finishes profiling, for all profiling
techniques, by automatically rebuilding all indices that are
associated with the profile database. The MSC implemen-
tation requires three indices: one that indexes individuals
by name, one that indexes program modules, and one that
indexes the vector space profiles based on the percentage of
term space coverage. These indices are specifically de-
signed to support identification and their use will be cov-
ered in the next section.

Identification
The details of implementing the change history and tech
support heuristics provide a clear example of how identifi-
cation heuristics can be moved into ER. As well, they dem-
onstrate how different modules can handle escalation in
different ways.

For identification, the identification supervisor manages
modules that have been built to perform identification. An
identification module base class provides basic functional-
ity for working with the profile database, interaction with
recommendation requests, and recommendation lists. Rec-
ommendation requests encapsulate the user request, the
system state of the request, and the recommendations that
were made in an attempt to satisfy the request. Recommen-
dation lists provide methods for ordering and reordering
items that have been recommended. Each recommendation
module is free to determine how escalation is managed and
exactly what additional action is taken on an escalation.

In the case of the change history, the action of the identifi-
cation module is fairly straightforward. The module parses
the request text to identify all of the program modules that
are mentioned in the request. For each program module, a
query is made of the profile database, returning a list of
individuals who have modified the module. If the request
contains multiple program modules then the resulting lists
are intersected to find people who touched all modules
mentioned. For each person identified, a recommendation
list item is created that includes the most recent modifica-
tion date and the total number of touches. The item is then
inserted into an unfiltered recommendation list ordered
from the most recent touch to least recent touch.

Tech support identification is similar to change history
identification. The request text is parsed and three query
vectors are created, one for symptoms, one for customers
and one for program modules. The profile database is then
queried using the vector space index. This index groups
profiles based on the percentage of terms covered by a per-
son’s vector space profile. Escalation level is used to de-
termine the percentage term space that must be covered
before a person will be considered. As the escalation level
rises, the term space that must be covered drops.

For each person returned, similarity of that person’s profile
is gauged relative to three query vectors determined by
parsing the request text. The cosine angle of incidence is
calculated for each query vector and the appropriate nor-
malized vector in the profile. A weighted sum of the angles
is calculated to create the overall ranking for the match.
The recommendation list maintains the order from highest
to lowest weighted sum.

Selection
When an identification module has completed, the unfil-
tered recommendation lists are passed to the selection su-
pervisor. The operation of the selection supervisor is simi-
lar to that of the identification supervisor. Selection mod-
ules transform an unfiltered recommendation list to a final

recommendation list by visiting each recommendation item
in the unfiltered list, and then validating or modifying the
recommendation. If the item will be part of the final rec-
ommendation it is inserted into the final list. The designer
of a selection technique decides how escalation level modi-
fies or changes each selection technique.

The MSC implementation includes three selection tech-
niques. The first technique is a simple “No Filter” capabil-
ity. This technique removes individuals who no longer
work for MSC. As each recommendation is visited, there is
a lookup in the user preference and organizational database.
If the person’s record indicates that she is still working for
MSC, she is added to the final recommendation list. The
escalation level does not modify this filter.

The second technique, “Departmental,” selects based on the
organizational distance between the department of the per-
son making the request and the department of each person
recommended. The filter module maintains a small graph
structure that represents the “distance” between each of the
departments at MSC. The departmental technique relies on
the current escalation level and the departmental graph to
determine who will be added to the final recommendation
list. The distance is calculated, and if the distance is less
than a threshold, then the person is added to the final rec-
ommendation list.

The third selection technique, “Social Network,” filters
recommendations based on an aggregate social network of
the MSC workplace. Data for the social network were ob-
tained during the fieldwork at MSC. Extended interviews
were conducted where the participants performed succes-
sive pile sorts, which resulted in an aggregate social net-
work for MSC. This social network is a graph structure
where the nodes represent individuals at the workplace and
the edges represent some relation that links two individuals.
The social network technique calculates the distance be-
tween the person making the request and the recommended
person. If the distance is less than a threshold, then the rec-
ommended person is added to the final recommendation.

Note that while these selection mechanisms use organiza-
tionally specific data for MSC, the techniques themselves
would generalize to other organizations.

Interaction Management
The interaction management modules in the MSC imple-
mentation exemplify how the specific details necessary to
create a working system may lead to the creation of more
general, reusable components. While these components
were required by MSC in order for ER to be successful in
their setting, all of the components are reusable within
other organizations.

For example, through our fieldwork at MSC we saw par-
ticipants make specific choices with regard to how they
controlled their accessibility by others and predilection to
specific communicative media. One expert had a unique
technique for indicating how interruptible he was depend-
ing upon the importance of the problem that required his

attention. He posted a sign on his already closed door. For
him, the system needed a similar mechanism.

Interaction management currently consists of three compo-
nents, the escalation tracker, a communication tracker, and
expert face management. This section will briefly cover
each of these three components.

The escalation tracker manages the expiration of recom-
mendation requests on the server side. This includes main-
taining a database of all active requests for each ER user.
When a client connects, the escalation tracking component
looks up the user in the request database and sends the ac-
tive requests. As requests expire, escalation tracking marks
the item, removes it from the database and notifies the ap-
propriate client. Lastly, the escalation tracker updates the
user profile and preference data.

The communications tracker is responsible for routing the
chat messages between users. The tracker receives all in-
coming messages, validates that the recipient is still con-
nected and then sends the message out. The tracker modi-
fies the user preference data on each communications at-
tempt. This implicit preference data contains a list of all of
the other users with whom contact was attempted and the
total number of communication attempts. The communica-
tions tracker also provides a simple mechanism for a user to
state explicit preference for any of the other users known
by the system.

Expert face management allows a user to have some con-
trol over her availability to other users through the system.
Face management allows a user to state her availability on
a four step scale from “available” to “do not disturb.” The
default, unless otherwise set, is available. Face manage-
ment does not require a user to attend to her level of avail-
ability. Face management includes a decay system that al-
lows a user to specify how quickly her current level of ac-
tivity will move toward being available. Face management
maintains a thread that periodically checks decay rates and
modifies availability settings.

In summary, the specific modules that comprise profiling,
identification, selection, and interaction management differ
in their level of specificity to the organizational setting. The
heuristics and algorithms used for identification and pro-
filing are very organizationally specific. While these identi-
fication heuristics might be used in another organization,
the implementation is for MSC and the specifics of their
identification mechanisms are particular to that setting. The
modules that make up selection appear organizationally
specific because they are tailored to the social and depart-
mental character of an organization. Yet, these modules
have some flexibility and can be adapted to other organiza-
tions given the appropriate data. Lastly, the modules in
interaction management are perhaps the least organization-
ally specific. The modules in interaction management have
a face validity that stems from a basic understanding of the
requirements of expertise location. As the MSC imple-
mentation shows, ER-Arch handles this combination of

organizationally specific and generic mechanisms for ex-
pertise recommendation.

CONCLUSIONS
The Expertise Recommender, through ER-Arch and the
implementation, demonstrates three key features. First,
ER-Arch is a general architecture that can be tailored to
many different recommendation situations. ER-Arch is
capable of supporting more traditional recommendation
situations by incorporating appropriate profiling and identi-
fication modules. It is also highly suited for expertise rec-
ommendation.

Second, the implementation of ER for MSC relies on pro-
filing techniques that are not common to other recommen-
dation systems. ER generates profiles of people based on
work products and work byproducts. This approach trades
the problems of critical mass and sparse ratings for prob-
lems with dirty and inconsistent organizationally specific
data sources.

Lastly, ER-Arch and the MSC implementation of ER begin
to tease apart technical concerns involved with making
recommendations from the social and collaborative con-
cerns. This separation allows ER to support multiple col-
laborative models and provide more adaptive recommen-
dations. The ER client exposes these features allowing ER
users to pick recommendation strategies appropriate for
their task.

Recommendation systems, such as ER, provide another
approach to supporting natural expertise locating behavior.
In situations where a senior employee, guru, information
mediator, or expertise concierge is not available, a system
like ER can suggest alternatives where previously no help
would have been available. By relying on organizationally
relevant sources of information and heuristics that are natu-
rally used, systems like ER can assist in finding people who
have expertise and who may not otherwise be identified.

Acknowledgements
This project has been funded, in part, by grants from Na-
tional Science Foundation (IRI-9702904), the UCI/NSF
Industry/University Cooperative Research Center at the
Center for Research on Information Technology and Orga-
nizations (CRITO), and the University of California
MICRO program. Additionally, the first author was sup-
ported by the University of California Regents’ Disserta-
tion Fellowship.

This work has benefited from conversations with Kate
Ehrlich, Saul Greenberg, Joe Konstan, John Riedl, Lynn
Streeter, Loren Terveen, and Clark Turner. Members of our
research group, Wayne Lutters and Jack Muramatsu,
contributed to our understanding of expertise. We thank the
anonymous reviewers for their feedback. We would also
like to thank the participants at MSC for their patience and
insights over the last few years.

REFERENCES
1. Allen, T.J. Managing the Flow of Technology. MIT Press,

Cambridge, 1977.

2. Balabanovic, M. and Shoham, Y. Fab: Content-Based, Col-
laborative Recommendation. CACM, 40 (3). 66 - 72.

3. Cicourel, A.V. The Integration of Distributed Knowledge in
Collaborative Medical Diagnosis. in Galegher, J., Kraut, R.E.
and Egido, C. eds. Intellectual Teamwork, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1990, 221 - 242.

4. Ehrlich, K. and Cash, D., Turning Information into Knowl-
edge: Information Finding as a Collaborative Activity. in
Digital Libraries '94, 119 - 125.

5. Foner, L.N., Yenta: A Multi-Agent, Referral-Based Match-
making System. in First International Conference on
Autonomous Agents (Agent'97).

6. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K.,
Harshman, R.A., Streeter, L.A. and Lochbaum, K.E., Infor-
mation retrieval using a singular value decomposition model
of latent semantic structure. SIGIR'88, 465 - 480.

7. Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. Using
Collaborative Filtering to Weave an Information Tapestry.
CACM, 35 (12). 61 - 70.

8. Hill, W., Stead, L., Rosenstein, M. and Furnas, G., Recom-
mending and Evaluating Choices in a Virtual Community of
Use. CHI '95, 194 - 201.

9. Hill, W. and Terveen, L., Using Frequency-of-mention in
Public Conversations for Social Filtering. CSCW '96, 106-112.

10. Kautz, H.A., Selman, B. and Shah, M. Referral Web: Com-
bining Social Networks and Collaborative Filtering. CACM,
40 (3). 63 - 65.

11. Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L.,
Gordon, L.R. and Riedel, J. GroupLens: Applying Collabora-
tive Filtering to Usenet News. CACM, 40 (3). 77 - 87.

12. Maltz, D. and Ehrlich, K., Pointing The Way: Active Collabo-
rative Filtering. CHI '95, 202 - 209.

13. McDonald, D.W. and Ackerman, M.S., Just Talk to Me: A
Field Study of Expertise Location. CSCW'98, 315 - 324.

14. Orr, J.E. Talking About Machines: An Ethnography of a Mod-
ern Job. Cornell University Press, Ithaca, 1996.

15. Paepcke, A. Information Needs in Technical Work Settings
and Their Implications for the Design of Computer Tools.
Computer Supported Cooperative Work: The Journal of Col-
laborative Computing, 5. 63 - 92.

16. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and
Riedl, J., GroupLens: An Open Architecture for Collaborative
Filtering of Netnews. CSCW '94, 175 - 186.

17. Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J.,
Miller, B. and Riedl, J., Using Filtering Agents to Improve
Prediction Quality in the GroupLens Research Collaborative
Filtering System. CSCW '98, 345-354.

18. Shardanand, U. and Maes, P., Social Information Filtering:
Algorithms for Automating "Word of Mouth". CHI '95,210-
217.

19. Shaw, M. and Garlan, D. Software Architecture: Perspectives
on an emerging discipline. Prentice Hall, 1996.

20. Streeter, L.A. and Lochbaum, K.E., Who Knows: A System
Based on Automatic Representation of Semantic Structure.
RIAO '88 , 380 - 388.

21. Terveen, L., Hill, W., Amento, B., McDonald, D. and Creter,
J. PHOAKS: A System for Sharing Recommendations.
CACM, 40 (3). 59 - 62.

