

Supporting Re-Use in DIY Software
Projects: A Gray-Box Approach

Abstract
DIYers who work with software often attempt to reuse
others’ work wherever they can as they seek to
assemble, modify, and extend their systems. In this
paper, we briefly discuss the challenges faced by
software DIYers in the process of reusing others’
software configurations through our study of the
MythTV community. We also discuss the benefits of
enabling users to engage with others’ configurations as
“gray-boxes,” allowing them to pay attention to just the
parts that must be opened up and modified and ignore
the rest. We propose a new technical facility called
Tailor Wear to give users guidance and hints about
where and how to modify configuration artifacts by
visually presenting the tailoring traces left by similar or
selected peers.

Keywords
Software customization, collaborative help, hacking
communities, recommender systems, knowledge
sharing

ACM Classification Keywords
H.5 INFORMATION INTERFACES AND PRESENTATION
(I.7)

Copyright is held by the author/owner(s).

CSCW 2011, March 19–23, 2011, Hangzhou, China.
ACM XXX-X-XXXXX-XXX-X/XX/XX.

Tao Dong
School of Information
University of Michigan
4322 North Quad
105 S. State St.
Ann Arbor, MI 48109-1285
dongtao@umich.edu

Jina Huh
School of Information
University of Michigan
4322 North Quad
105 S. State St.
Ann Arbor, MI 48109-1285
jinah@umich.edu

Mark W. Newman
School of Information
University of Michigan
4322 North Quad
105 S. State St.
Ann Arbor, MI 48109-1285
mwnewman@umich.edu

Mark S. Ackerman
School of Information and Dept. of
 EECS
University of Michigan
4322 North Quad
105 S. State St.
Ann Arbor, MI 48109-1285
ackerm@umich.edu

 2

General Terms
Software customization, collaborative help, hacking
communities, recommender systems, knowledge
sharing

Introduction
People engaged in Do-It-Yourself (DIY) software
projects often take existing components and try to
modify and tailor them for their own needs [2].
Relatively few people appear to create their own
components from scratch. Instead, they reuse what
they can.

While reusing existing components saves work, it can
be an extremely frustrating experience, as anyone
trying to configure complex systems can attest. What
can be done to make it easier for people to re-use
others’ work for their own purposes?

To examine this question, we conducted a study of help
interactions in the MythTV community1 that aimed to
understand the challenges MythTV users faced in giving
and receiving help around configuration [4]. In this
paper, we summarize some of the challenges that are
faced by MythTV community members and describe our
early work on developing technical facilities to address
those challenges. In particular, we describe Tailor
Wear, a technical facility we are currently developing to
enable appropriation of peer-contributed configuration
artifacts.

In the rest of the paper we first present our
observations of the MythTV user community. We then
describe the current design of Tailor Wear, and discuss

1 http://mythtv.org

how it can address the configuration issues in tailoring
software components.

MythTV And Its Community
MythTV is a highly tailorable open-source home media
system. Through modifying its configuration files, home
media enthusiasts can enable and customize a vast
number of features such as recording TV shows,
watching DVDs, playing games, and receiving weather
forecasts. Though flexible and powerful, configuring
MythTV can get very complicated. First, the
configuration space is huge and growing. Secondly,
environmental factors such as which country the user
lives in, whether the user is using a cable service or
over-the-air service, and whether she subscribed to a
standard or high definition TV service also affect the
configuration of one’s MythTV system.

In an earlier study, Huh, Newman, and Ackerman
studied the MythTV user-mailing list where users
receive technical support from peers [4]. This study
analyzed a sample of approximately 4000 messages to
identify patterns of help exchanges and identify
challenges faced by list members. We further validated
our findings by conducting a total of 12 interviews with
MythTV users.

Our observation indicated that configuration artifacts
such as settings files, logs, scripts, error messages, and
the outputs of certain diagnostic tools played an
important role in the collaborative help process. In
many cases, providing and receiving help in the form of
such configuration artifacts appeared to greatly
improve the efficiency of sharing knowledge. If the
shared artifact was compatible with the receiving user's
system and relevant to their needs, they could employ

 3

the artifact without completely understanding its
internal logic or the work needed to recreate it.
However, when the shared artifact was not a perfect fit,
users faced considerable challenges that hampered
their ability to reuse or modify components and
configurations.

Challenges of Configuration-based Help
In [4] we describe a number of issues faced by users.
Here we focus on just one of the challenges—the
difficulty of determining whether an artifact could be
used as-is or must be opened up and modified. The
ideal situation in sharing configuration artifacts was
when they were in the form of scripts, code, or files
that had the ability to be transferred and reused by
anyone else requiring, at most, minor modifications.
These could be appropriated by others as “black
boxes,” meaning that the receiver could make use of
them without understanding anything about how they
worked. However, users struggled when they had to
open up a configuration artifact (e.g., a settings file),
search for sections requiring adaptation, and finally
make the right modifications. In such cases, the artifact
became a “white box,” requiring a high degree of
comprehension on the part of the receiver in order to
make use of it.

A critical problem for user in using configuration
artifacts, then, is determining which part of the
configuration needs to be modified and what part can
be ignored. In the following example, Avenard was
trying to find a certain line to modify in a device
configuration file but became overwhelmed by the
irrelevant complexity posed by other parts in the
configuration file:

After reading a lot about udev 2 , and trying a few
different configurations, I've been unable to get it
to work as I wanted. I guess my problems come from
that I do not know which driver is actually handling
the IR interface... which makes it hard to guess the
correct line in the udev rules. (ML: Jul 3, 2006,
Avenard)

As the above example shows, it is not always the case
that components or configurations of components can
be “black-boxed” (closed) or “white-boxed” (completely
open). In our view, then, MythTV users, would benefit
from some form of “gray-box” reusability. If done
correctly, gray-boxing would allow users to
simultaneously ignore details when possible, open up a
configuration artifact completely if necessary, and deal
with parts as required. Supporting gray-box reusability
would facilitate sharing and learning how to modify
reusable solutions.

Technical Support for Gray-box based
Software Customization
Wulf, Pipek, and Won [5] argue that component-based
architectures are particularly well-suited to presenting
end-users with a gray-boxed view of tailorable systems.
However, additional challenges arise when dealing with
systems such as MythTV that were not designed to
support gray-box reusability. As a starting point , we
believe a technical facility to collect, monitor, and share
configuration traces from various community members
would be most helpful to allowing a wide range of users
to hack. Users could see other users’ revisions of and

2 Technically, udev is part of Linux and not MythTV proper.

However, modifying udev rules is a common activity for
MythTV users. At least one page of the MythTV wiki is
dedicated to udev rules (http://www.mythtv.org/wiki/
Device_Filenames_and_udev) and udev is mentioned in
hundreds of messages in the mythtv-users archive.

 4

annotations to their configurations. We are currently
exploring a variety of techniques to present
transformed, aggregated, or filtered traces. Our system

is called Tailor Wear, inspired by the computational
wear approach [1,3]. Computational wear employs the
metaphor of physical wear that emerges on a document
that is used over time. The smudges, crease lines, and
annotations left by the users on the document can
signify the patterns of usage and give new users hints
about how to most efficiently consult the document.

Similar to the document wear metaphor, Tailor Wear
allows users to explore the traces of configuration work
left by similar or selected others who previously
modified their own instance of the same configuration
artifact. Traces are computational representations of
users’ revisions and annotations to a configuration
artifact. Those traces are captured, aggregated, and re-
presented to users without effort of their original
creators.

As mentioned before, the configuration traces left by
peers with similar experience or needs could be most
helpful to guide gray-boxing. By restricting the traces
to those of the similar others, users are more likely to
see ready-made solutions to the problems they run into
or a new feature they want to add.

It is challenging to present those traces in an
informative, intuitive, and non-distracting manner.
Users will want to view a subset of the configuration
traces that are relevant to their problem. We are
exploring a variety of visualization techniques to
present transformed, aggregated, and filtered traces.
We think the attribute-mapped scroll bars [3] (shown in
figure 1) could be a sensible approach to display a
variety of useful abstractions of accrued configuration
traces. Alternatively, an attribute-mapped highlighting
scheme or heat maps could serve a similar purpose.

Figure 1. An example Tailor Wear visualized as attributes-
mapped scroll bars. Each scroll bar is a bar chart showing a
particular type of trace attributes. The above visualizations
answers questions such as: which parts of the configuration
are most identical and most varied across users (1.a)?
Which parameters of the configuration are modified in a
coordinated way (1.b)? Which parts of the configuration do
the lead users frequently modify (1.c)? And which parts of
the configuration are annotated most frequently with a
certain keyword (1.d)?

 5

As well, Tailor Wear can automatically suggest similar
others from whom traces are transformed and
presented in the user interface. We are exploring a
number of different ways of determining similarity of
users by comparing users’ configuration artifacts, usage
patterns of their system, previous configuration traces,
and self-reported profiles.

To some users in a learning process, just seeing what
the similar others have done might not be enough.
Instead, they can choose to follow lead users to learn
best practices. Such lead users or experts can be
identified by a number of expertise finding algorithms
[6] and new metrics developed by analyzing the usage
data of Tailor Wear, i.e. who initiates changes that are
adopted by others.

Finally, Tailor Wear also allows users to annotate their
own and others’ traces with comments, instructions,
and potentially questions and answers. Those semi-
structured annotations provide context for the shared
tailoring traces, providing foundations for searching
traces, embedding tutorials in configuration artifacts,
and capturing feedbacks.

To sum up, Tailor Wear enables gray-boxing as a
process of social navigation in editing configuration
artifacts. Tailor Wear leverages tailoring traces of
similar or selected peers to socially signify where
attention should be paid, what can be ignored, and how
appropriate changes could be implemented.

Conclusion
In this paper, we described a facility to provide help to
software DIYers, based on our study of the challenges
faced by members of the MythTV community. We

discussed the benefits of enabling users to customize
their configuration as a gray-box, with attention only
paid to the parts that must be opened up and modified.
A technical facility called Tailor Wear was proposed to
give users guidance and hints about where and how to
modify a configuration by visually presenting the
tailoring traces left by similar or selected peers.

References:
1. DeLine, R., Khella, A., Czerwinski, M., and

Robertson, G. Towards understanding programs
through wear-based filtering. Proceedings of the
2005 ACM symposium on Software visualization,
(2005), 183–192.

2. Hartmann, B., Doorley, S. and Klemmer, S. R.
Hacking, Mashing, Gluing: Understanding
Opportunistic Design. IEEE Pervasive Computing 7,
3, (2008).

3. Hill, W.C., Hollan, J.D., Wroblewski, D., and
McCandless, T. Edit wear and read wear.
Proceedings of the SIGCHI conference on Human
factors in computing systems, (1992), 3–9.

4. Huh, J., Newman, M. W., Ackerman, M. S.
Supporting Collaborative Help for Individualized Use.
Will appear in the proceedings of ACM CHI 2011.

5. Wulf, V., Pipek, V., and Won, M. Component-based
tailorability: Enabling highly flexible software
applications. International Journal of Human-
Computer Studies 66, 1 (2008), 1-22.

6. Zhang, J., Ackerman, M.S., and Adamic, L. Expertise
networks in online communities: structure and

 6

algorithms. Proceedings of the 16th international conference on World Wide Web, (2007), 230.

[1]

